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We take mathematical structure to mean the identification of general 
properties which are instantiated in particular situations as relationships 
between elements or subsets of elements of a set. Because we take the view 
that appreciating structure is powerfully productive, attention to structure 
should be an essential part of mathematical teaching and learning. This is 
not to be confused with teaching children mathematical structure. We 
observe that children from quite early ages are able to appreciate structure 
to a greater extent than some authors have imagined. Initiating students to 
appreciate structure implies, of course, that their appreciation of it needs to 
be cultivated in order to deepen and to become more mature. We first 
consider some recent research that supports this view and then go on to 
argue that unless students are encouraged to attend to structure and to 
engage in structural thinking they will be blocked from thinking 
productively and deeply about mathematics. We provide several 
illustrative cases in which structural thinking helps to bridge the mythical 
chasm between conceptual and procedural approaches to teaching and 
learning mathematics. Finally we place our proposals in the context of how 
several writers in the past have attempted to explore the importance of 
structure in mathematics teaching and learning. 

Theoretical Frame 
We take mathematical structure to mean the identification of general 

properties which are instantiated in particular situations as relationships 
between elements.  These elements can be mathematical objects like 
numbers and triangles, sets with functions between them, relations on sets, 
even relations between relations in an ongoing hierarchy. Usually it is 
helpful to think of structure in terms of an agreed list of properties which are 
taken as axioms and from which other properties can be deduced. 
Mathematically, the definition of a relation derives from set theory as a 
subset of a Cartesian product of sets. Psychologically, a relationship is some 
connection or association between elements or subsets which have been 
themselves been discerned. When the relationship is seen as instantiation of 
a property, the relation becomes (part of) a structure. For example: 

The relation between a whole number and its double can be denoted by {[n, 
2n]: n = 1, 2, 3,…} or by n –> 2n among other ways; being a pair consisting of 
a number and its double is a property instantiated here among the whole 
numbers, but other numbers are possible. 
The set {[1, 2], [2, 5], [3, 2], [1, 4], [4, 4]} is also a relation, though not one that 
deserves a special name, and unlikely to be an instantiation of a specific 
property other than that it specifies this relation! 
Recognising a relationship amongst two or more objects is not in itself 

structural or relational thinking, which, for us, involves making use of 
relationships as instantiations of properties.  Awareness of the use of 
properties lies at the core of structural thinking. We define structural 
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thinking as a disposition to use, explicate and connect these properties in 
one’s mathematical thinking. 

We adopt a phenomenological approach to studying opportunities for 
stimulating learners to appreciate mathematical structure, at every age and 
stage of their exposure to mathematics and to mathematical thinking.  We 
start from the position that mastering procedures is an important 
component of taking advantage of opportunities to make mathematical 
sense, but that it is of little value to learners if it is simply a procedure, 
because as the number of procedures increases, the load on memory and 
retrieval becomes more and more burdensome. When procedures are 
accompanied by even a minimal appreciation of the mathematical structures 
which make them effective and which provide criteria for appropriateness, 
learning shifts to focusing on re-construction based on re-membering 
(literally) rather than relying totally on photographic or rote memory. 

The notion of mathematical structure pervades modern mathematics, 
reaching its height in the work of Birkhoff and Maclane (1958) and 
subsequent developments, including the Bourbaki enterprise of codifying 
and inter-relating the structures of known mathematics (Beaulieu, 1990; 
Mashaal, 2006). Roots of a search for structure can be found as far back as 
Euclid, through Gauss and then in the profusion of developments in the 19th 
century, including Peano’s axioms for arithmetic, various axioms for non-
Euclidean geometries, groups, rings, fields and so on (Cohn, 1965). We take, 
as the essence of this modern movement, the identification and isolation of 
properties used as the sole basis for reasoning, so that any deductions apply 
to any instantiation of those properties. For example, using objects called 
Points and Lines where Lines are sets of Points, there are two properties 
which axiomatise projective geometries: 

• For each pair of distinct Points, there is a unique Line containing 
them; 

• For each pair of distinct Lines there is a unique Point common to 
them. 

These two properties have the following duality: Objects called Points 
and objects called Lines can be interchanged to give new theorems, and may 
not even have the appearance either of points or lines. 

The underlying theoretical frame being used here is a distinction 
between different forms, states, or structures of attention (Mason, 2003, 
Mason & Johnston-Wilder, 2004): 

• Holding wholes (gazing), 
• Discerning details (making distinctions), 
• Recognising relationships (among specific discerned elements), 
• Perceiving properties (as generalities which may be instantiated 

in specific situations), 
• Reasoning on the basis of identified properties. 
The suggestion is that there is a subtle but vital difference between 

recognising relationships in particular situations, and perceiving 
relationships as instantiations of general properties which can apply in 
many different situations. This implies, we argue, that structural thinking 
must be thought of as a part of a continuum. Put another way, because 
language is necessarily general, it is very difficult to tell from a learner’s 
words whether they are dwelling totally in the specific and the particular, 
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are vaguely aware of the particular as a special or particular case of 
something more general, or are aware of the particular as an instantiation of 
a general property. A useful language for discussing this issue is provided 
by variation theory (Marton & Booth, 1997; Marton & Trigwell, 2000; Marton 
& Tsui, 2004) whose roots go back to Aristotle. Marton claims that learning 
is associated with discerning variation among proximal events. Human 
beings naturally detect similarity through becoming aware of variation. The 
critical features for variation to be detected seem to be that there is 
juxtaposition of variation in close proximity of time if not place, or some 
other reason for attending to the multiplicity, that the variation be in some 
but not too many dimensions at once, and that the range of variation 
displayed be comprehensible.  Thus varying four different aspects at the 
same time, and using elements which are unfamiliar, is unlikely to promote 
awareness of possible variation.  

This idea is particularly powerful in mathematics, because variables and 
their variation are our stock in trade. Furthermore, in mathematics we like to 
vary whatever can vary, so rather than considering given dimensions of 
variation we also think about what dimensions can possibly be varied, and 
in what ways they can vary. Marton’s use of dimensions of variation is too 
general, so we use dimensions-of-possible-variation and range-of-permissible-
change to capture the qualities of variation arising in mathematics (Watson & 
Mason, 2003; Mason & Johnston-Wilder, 2004). Thus, for example, when 
considering counting, a dimension of possible variation is the magnitude of 
the number, and the range of permissible change is limited to whole positive 
integers – although magnitude of number in other contexts has other 
possible ranges of change. The cardinal number arrived at when counting 
only has meaning if the learner experiences situations with various 
cardinalities. These distinctions in attention and the role of variation will 
become clearer in the examples which follow. 

In the rest of this paper we provide a wide range of examples from 
school mathematics where awareness of structure makes a significant 
difference to understanding. We then look in more detail at how structural 
awareness supports significant shifts between arithmetic and algebraic 
thinking. Finally we discuss pedagogic implications, indicating some earlier 
contributions to this issue. 

Examples of Structures Supporting Understanding and 
Appreciation 

We believe that attention to structure runs through the whole of 
mathematics, and that shifts of attention make a difference to how 
mathematics is seen. But we are not giving instructions about how to make 
this happen. Instead, we offer a range of examples which support our 
contention that appreciation of mathematical structure is vital for 
understanding, and well within the grasp of learners at all ages, even if it is 
not explicit or articulated. These examples are drawn from various aspects 
of mathematics: patterns, children’s arithmetic, angle sums, quadratics, 
multiplicative structure and geometric structure.  
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Replicating and Constructing Repeating Patterns 
As evidence of the capabilities of young children, we note particularly the 
work of Papic (2007). She was approached by some teachers of pre-school 
children (<5-year-old) who wanted to exploit children’s natural play so as to 
draw out lessons that would contribute to their mathematical thinking. By 
alerting themselves to pedagogic possibilities, particularly in terms of 
getting children to reflect on their pattern-recognising and pattern-making 
activities, teachers developed ways to challenge learners to be more 
systematic and more structured than they might otherwise have been. The 
children they worked with showed significantly more sophisticated 
behaviour concerning the recognition and construction of patterns than did 
a parallel control group.  In particular, they got children to reflect on their 
pattern-making activities and they developed ways to challenge the learners 
to be more systematic and more structured than they would otherwise have 
been. Along the same lines, Cooper and Warren (2008) and Warren and 
Cooper (2008) show how it is possible to construct tasks which alert young 
children to the difference between repetitions in patterns, and growth 
patterns (such as multiplicative and exponential growth). For example, in 
the pattern RB, RBB, RBBB, RBBBB, the R is repeated each time, but the B 
grows in a steady manner. 

Some children benefit from having their attention directed to these two 
aspects of patterns, what grows and what stays the same, enabling them to 
respond appropriately to more sophisticated patterns than would otherwise 
be the case. A pedagogically effective approach is repeatedly to invite 
learners to say what they see as being the same, and what different about, 
different parts of a pattern, or different patterns. In variation theory, it is 
suggested that we respond to near simultaneous variation because then the 
contrast between change and invariance is easily visible. Attention can be 
directed (without being explicit) to features which are changing and features 
which are invariant, thus supporting awareness of dimensions-of-possible-
variation and relevant ranges-of-permissible-change. Becoming accustomed 
to considering invariance in the midst of change, a ubiquitous mathematical 
theme, enculturates learners into a productive disposition (Kilpatrick, 
Swafford & Findell, 2001). 

The teachers involved in Papic’s (2007) study prompted students to 
become aware of repetition and growth as structures which can then be used 
to extend sequences. Such students were being exposed to multiple 
situations in which attention is usefully drawn to relationships between 
components in the form of repetitions and gradual changes. The 
mathematical way of describing how to draw attention to repetition and 
change is through controlling variables and, as Warren and Cooper (2008) 
demonstrate, it is through controlling variables that teachers can guide the 
attention of students. 

Structural generalisation is quite different from empirical counting. As 
Rivera (2008) points out, any pattern-recognition is founded on an abductive 
assumption that “things that seem to be the case will continue to be the 
case”, and that “patterns are present”. Many mathematical-looking tasks 
involve inviting people to extend ‘patterns’ and to predict the nth term. In 
order to be mathematical tasks, there has to be prior agreement or 
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articulation of the actual underlying structure that generates the given 
sequence.   

Thus the sequence 1, 2, 4, 8, … is under-specified until it is related to 
some structural situation which generates the sequence (Mason, Burton & 
Stacey, 1982). In a more complex setting, asking for the number of regions 
formed by drawing all chords between n points distributed in general 
position around a circle provides a structurally generative action which can 
then be formulated and expressed in general, passing through the sequence 
above. Steiner’s problem, which Pólya (1965) used in his film Let Us Teach 
Guessing, asks for the number of regions of space formed by n planes in 
general position. Pólya invites students to specialise to simple cases and to 
try to proceed inductively, not just to obtain a sequence, but to become 
aware of an underlying structure that can be used for the nth case. The 
students abductively conjecture the same geometric sequence which, 
however, soon collapses because the sequence is actually generated by 
polynomials. In this example, if the dimension-of-variation is taken to be the 
sequential positional number, rather than the number of points on the circle, 
learners are directed towards pattern-generation instead of towards the 
underlying structure.  

To ask for predictions about the sequence A B B A A B B A A B B A … is 
to force or enculturate learners into abductive assumptions about the way 
patterns usually work, but in the absence of any structural means for 
continuing the sequence, questions about the position of the nth A or the 
letter in the nth position are meaningless. However, if a structural rule is 
given (after the first A, alternate two As with two Bs; alternatively, repeat the 
pattern ABBA) or if structural information is given (the repeating pattern has 
already appeared at least twice), then the sequence is uniquely specified and 
it makes sense to count and predict (Mason et al., 1982). Enculturation into a 
mathematical expectation or anticipation of structure involves getting 
learners to articulate the structural basis for possible patterns as a matter of 
routine. For example, the fact that (−1) x (−1) = 1 arises from 
mathematicians’ explicit desire to extend structural properties of arithmetic 
such as associativity and distributivity from whole numbers to integers. 

Children’s Methods 
Inviting children to find ‘quick ways’ to do arithmetic calculations such as 
adding the same to both numbers to reach an easier calculation (47– 38 = 49 
– 40) and the many variants, can be an entry into appreciating structure. The 
issue at any point is whether other learners appreciate that what they are 
discovering is a method, based on the key ideas of equivalence, compensation 
and attention to operations, rather than a single particular clever move. 
There is no need even to use particular numbers as the following example 
shows: 

 
Two numbers have been chosen but we do not know what they are. We are 
about to subtract the second from the first, but before we do, someone adds 
1 to them both (or perhaps adds 3 to the first and subtracts 2 from the 
second).  What will be the difference in the differences? 
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There is a basic awareness based on physical manipulation of objects 

which tells people the answer without having to do particular cases, even 
with the extension to separate adjustments (Lakoff & Nunez, 2000). 
Curiously, extending a corresponding task with division is much harder, 
presumably because multiplicative awareness receives less attention and is 
encountered only after addition has been well established (Davis, 1984): 

 

Two numbers have been chosen but we don’t know what they are. We are 
about to divide the first by the second, but someone first multiplies them 
both by 3 (or perhaps multiplies the first by 3 and the second by 2). What is 
the ratio of the quotients? 

The important part of the task is not the structural appreciation that 
adding one to both numbers makes no difference to the difference, but the 
push to exploring dimensions-of-possible-variation.  What can be changed 
in the question and still the answer is the same?  What if an answer itself is 
taken to be a dimension of variation? We have to decide what has to be 
changed in the question, and how to change it to get the answer.  What if the 
operation itself is taken to be a dimension of variation so addition can be 
changed to subtraction, multiplication or division? Structural appreciation 
lies in the sense of generality, which in turn is based on basic properties of 
arithmetic such as commutativity, associativity, distributivity and the 
properties of the additive and multiplicative identities 0 and 1, together with 
the understanding that addition and subtraction are inverses of each other, 
as are multiplication and division. By working on tasks which focus on the 
nature of the relation rather than on calculation, students’ attention is drawn 
to structural aspects as properties which apply in many instances. A more 
detailed analysis of connections between relational thinking in arithmetic 
and mathematical structure can be found in the next main section.  

Angle Sums of Planar Triangles 
The sum of the interior angles of a planar triangle is 180°. A standard 
approach to ‘teaching’ this theorem is to get learners to measure angles of 
triangles using a protractor, resulting in a range of sums of the order of 180° 
± 10°. Eventually the teacher is forced to declare that the answer should be 
180°, but this is likely to convince only those children who are trying to 
please the teacher and accept everything they are told. The experiment itself 
fails to convince anyone because the variation is due to measurement error, 
not to dimensions-of-possible-variation in the structural sense. It may 
however provide kinaesthetic support for what it asserts.   

The epistemological basis for knowing the sum of the angles of a 
triangle lies neither in the material world, nor in the social world, but in the 
structural world of mathematics and the imagination (Hilbert & Cohn-
Vossen, 1952). It is a consequence of an assumption about the material 
world, namely that, in the plane, keeping track of the rotation of a direction 
indicator as you transport it around the boundary of a triangle (indeed any 
non-self-intersecting polygon) always yields one full revolution (also known 
as the ‘turtle-turning theorem’: see Abelson & diSessa, 1980). The sum of the 
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interior angles can be deduced by reasoning on the basis of this explicitly 
acknowledged property. 

The turtle-turning theorem is structurally perfectly adequate as the sole 
basis for reasoning about the exterior angle sum and, being based on 
personal bodily experience, links the kinaesthetic with the cognitive through 
reflective abstraction (Piaget, 1970), that is, through becoming aware of 
coordinated actions. It is an underlying structural reason for the result. The 
actual angle sum is not something that needs to be memorised, since 
familiarity will develop with use and with the confidence of being able to 
reconstruct it using the body-based notion of turning. Because it is used on 
imagined triangles (though it could be initiated by having someone traverse 
a big triangle while someone else records the turn, not by measuring but by 
replicating while standing at a fixed point), the result is a property that 
applies to all triangles, not just the few illustrated in the textbook. 

This type of approach is an instance of productive thinking, to use a term 
coined by Wertheimer (1945, 1961) to which we shall return later, because 
the notion of traversing a closed planar figure is not restricted to triangles, 
nor even to polygons; and it can be extended to figures in which the turtle 
turns through other whole numbers of full revolutions (winding numbers 
other than 1) such as with self-crossing polygons.  There are some hidden 
assumptions, however. Because you are effectively transporting an angle 
from one place to another (the angle turned through so far) you have to 
assume that this movement does not change the measure of the angle (as 
indeed it does in some less familiar mathematical spaces).  

The turtle-turning observation about the total directional change is an 
example of what Gattegno (1987) referred to as an awareness, a basis for 
action, what Papert (1980) called syntonic awareness, and what Simon (2006) 
calls key developmental awarenesses. Lakoff and Nunez (2000) go further 
and propose that all mathematical concepts can be traced back to bodily 
awarenesses. A concomitant observation is that angles are invariant under 
scaling, or in other words, the size of an angle does not depend on the 
lengths of the arms (Balacheff, 1987, 1988). Bringing such structural 
awarenesses to the surface through carefully constructed tasks is quite 
different from lessons based on “today we shall have naming of parts”1 of 
polygons, or types of polygons, since the only structural aspect is the 
naming of polygons by the number of their vertices. Technical names 
emerge quite naturally when they facilitate communication; but when 
learning names becomes an end in itself it interferes with learners 
developing a sense of, and appreciation for, mathematical structure. 

When applied to simple planar polygons with n sides, the interior angle 
sum is seen to be (n – 2) straight angles. It is all too easy to imagine 
worksheets which simply tell students the formula and ask them to fill out a 
table using substitutions, or which provide a table and expect students to 
induce the formula from some examples. Substituting various values for n is 
an exercise in arithmetic, perhaps, but has little to do with appreciating 
structure.  However, seeing (experiencing) what happens when triangles are 
glued together along edges to create polygons, and seeing (experiencing) 

                                                
1  Opening line of a poem called Naming of Parts by Henry Reed. 
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how the sum of the interior angles of the triangles relates to the sum of the 
interior angles of the polygon, reinforces appreciation of a related structure, 
in which complex shapes are built up from triangular ones, just as 
complexes are built from simplexes in homology theories.  The appreciation 
of structure has to do with experience of generality, not reinforcement of 
particularities. It is not a subject for empirical-inductive accumulation. 

Completing the Square 
Completing a quadratic expression so that it is displayed as the scaling and 
translating of the square of a quantity is often seen as a bit of theory to offer 
to the quicker thinkers while everyone else is engaged in the principal task 
of practising factoring or using ‘the formula’, presumably because this is 
what is expected in assessment. But it is precisely the process of completing 
a square in general which constitutes the underlying structure, which in 
turns affords the possibility of the important awareness that ‘all quadratic 
graphs look like ± x2’, by translating and scaling. This appreciation can be 
expressed alternatively by noticing that with a single template of a parabola 
it is possible, in principle, to draw any parabola by appropriate use of 
scaling, translation and/or reflection. In other words, by re-labelling the 
axes (allowing the positive y-axis to point downwards), a single parabola 
becomes the graph of any parabola. Without at least a sense-of the process, it 
is very difficult to re-construct when needed, so students resort to 
memorisation or, worse, to mnemonics to aid rote memory.  

Rehearsing the technique on multiple examples, even with carefully 
judged variation in critical dimensions (the particular coefficients) and in 
their corresponding ranges-of-permissible-change, is most likely to attract 
students’ attention to the technique rather than the structural generality.  
Thus students may adopt the practice of ‘completing the square’ as a 
sequence of actions. They may develop fluency through multiple rehearsals.  
But this sort of trained behaviour proves to be un-robust when conditions 
change (for example recognising x4 + 3x2 + 14 or 2 sin2 x + 3 cos x – 5 as 
quadratics, or on encountering Tartaglia’s solutions of the cubic and quartic 
equations). More powerful is to be aware of having a general technique even 
if it consists of carrying out an automated practice. This awareness can arise 
through having attention drawn out of the mere doing, so as to reflect on 
what is being achieved mathematically beyond getting the answers in the 
back of the book.  Much more powerful again is having a sense of what 
completing the square does and how it works through an appreciation of its 
geometrical and algebraic manifestation, so that the details can be re-
constructed or varied to suit the situation. 

The symbolic form y = a(x + b/2a)2 – b2/4a + c can be much more easily 
perceived as a translation in the x direction, a scaling, and then a translation 
in the y direction, than can y = ax2 + bx + c. On the other hand, the format y = 
a(x – r)(x – s) makes the roots explicit (and extends to polynomials of higher 
degree). There are connections between these that are often overlooked, such 
as that –b/2a is the mean of the roots, and that (b2 – 4ac)/a2 is the square of 
the distance between the roots (r – s) (Watson & Mason, 2005). There is 
semantic as well as syntactic content: stressing the syntactic leads to 
emphasis on techniques, while stressing the semantic leads to emphasis on 
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structural relationships.  The important feature about structural 
relationships is not to convert them into content to be learned, but rather to 
treat them as awarenesses to be brought to the surface, possibly through the 
use of carefully-varied examples, language, layout and gesture, and 
integrated into functioning so that learners can reconstruct details when 
they need them. When the process has become familiar, there is an 
intermingling of recall of syntax or form, and semantic re-construction based 
on understanding. 

Multiplicative Structure 
It is a well known phenomenon that many secondary school students, when 
asked for the factors of a number presented in the form 3253 will first 
multiply the numbers out to get a numeral, and then turn around and try to 
factor it.  They simply do not see 3253 as a number, but only as an instruction 
to calculate. Zazkis (2001) found with pre-service elementary school teachers 
that she could provoke them to perceive the prime-power form as a 
structural presentation of a number by using very large numbers whose 
very size negates any desire to calculate. Familiar routines are more likely to 
come to the fore than fresh or unfamiliar ways of perceiving, so using 
examples which block familiar routines may in other situations prove to be 
useful for provoking students to perceive a different structure. An instance 
of this is the following task about addition: 

Under dictation, write down a collection of three and four digit numbers, in 
a column, but with the wrinkle that the high-order digits are to the right, so 
everything is written down ‘backwards’. Once fluency has been achieved, 
add up the column so as to get the correct answer when read from right to 
left. Similarly, write down two three-digit numbers backwards and 
multiply them together by long multiplication. 

The effect of breaking an automated habit draws the process to the 
surface. People often report that it causes them to re-think the technique. 

There is considerable difference between the notion of ‘structure of 
multiplication’ seen as a multiplication table with changing differences as 
you move from row to row or column to column, and the multiplicative 
structure of numbers, arising when numbers are presented in terms of their 
prime factors, or as scalar multiples of each other. In multiplication tables 
the most obvious dimension of variation is often the additive relation 
between products; so to focus learners’ attention on structure requires a 
deliberate challenge to the ‘normal’ kind of presentation. Furthermore, 
multiplicative relationships lie at the heart of the appreciation of ratio (see 
Vergnaud, 1983; Harel & Confrey, 1995), based on bodily awarenesses such 
as assigning portions of a number of objects equally amongst several people 
rather than repeated addition. 

Multiplicative Closure 
Euler (1810) demonstrated that numbers of the form a2 + b2 where a and b are 
integers are closed under multiplication, and went on to show that for a 
fixed k, numbers of the form a2 + kb2 are also closed, due to the fact that 
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(a2 + kb2)(x2 + ky2) = (ax + kby)2 + k(ay – bx)2 = (ax – kby)2 + k(ay + bx)2. 
This result can be seen as an algebraic curiosity. But if a, b, x and y are 

seen as dimensions-of-possible-variation, with integers (or positive integers, 
or rationals) as the range-of-permissible-change, then the relationship 
becomes a property. A sense of structure begins to emerge. 

Appreciating the ways in which sets of numbers satisfy relationships 
(e.g., closure of a binary operation) leads to the study of the consequences of 
such relationships taken as properties.  Here, for each k, the sets of numbers 
expressible as the ratio of two numbers of the form a2 + kb2 (the denominator 
being non-zero) has the properties we now associate with groups. Thus a 
surprising algebraic relationship can be turned into a property to yield 
structure amongst certain integers and beyond (taking k to be irrational or 
real), and a structure amongst certain rationals. The ‘structural move’ which 
characterise so much of 20th century mathematics came about by selecting 
certain properties, taken as axioms, as the basis for further reasoning. 

Geometric Structure 
We have concentrated so far on algebraic structure, but we consider our 
remarks to be every bit as valid when applied to geometrical structure 
(including topology). As a single but far-reaching example, consider the 
following task based on a sample exam question from Latimer and Smith 
(1937, p. 193) drawn to our attention by Küchemann2. 

Two medians are drawn in a triangle, intersecting in the centroid. What can 
be said about the areas of the two shaded triangles, whose vertices consist 
of one vertex of the triangle, the midpoint of a side, and the centroid? 

 
 
To make progress, it is essential to bring in outside knowledge. There is 

no point in measuring, as the diagram is unlikely to be accurate; what is 
needed is something that relates area to medians. A Pólya-esque approach 
might be to start with a simple case (Pólya, 1945, 1962) such as an equilateral 
triangle, where a relationship between the areas is clear by invoking the 
property of symmetry as a relation between the two regions. Then one might 
look for a way of varying what is known so as to approach what is not 
known.  Another approach might be to cast around for what is known in the 
situation and connect that with what is wanted (Mason, Burton & Stacey, 
1982). This process might lead to introducing a segment known to be 
                                                
2 Personal communication with Dietmar Küchemann, July, 2008. 
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parallel to the base; extending the shaded triangles by the same triangle (in 
either of two different ways) to produce triangles between parallels on a 
common base; after which the desired equality can be deduced. Each of 
these connections, each of these instantiations of a general property not only 
in the particular triangle depicted but in all triangles, is structural thinking 
in a geometric context. It involves shifts between the levels of geometric 
understanding delineated by the van Hieles (see van Hiele, 1986). They 
sought to identify levels of progress in students’ geometrical understanding 
varying from simple visualisation, through analysis and informal reasoning 
to deductive reasoning and rigour. We prefer to think of how attention shifts 
between these levels in terms of the movement back and forth between 
different forms or states. These movements or shifts in how that attention is 
structured, rather than merely what is attended to, account for the 
emergence of the geometrical thinking of students and of experts. This is 
particularly helpful in thinking about the difference between inductive 
approach and deductive reasoning, which involve different ways of looking 
at objects. As with arithmetic and algebra, the student is expected to see or 
experience the general through the particular (cf. Whitehead, 1911 pp. 4-5), 
in other words, to appreciate the dimensions-of-possible-variation intended 
by the diagram and by the reasoning.  

Relational or Structural Thinking in Arithmetic 
In this section we probe more deeply into connections between structural 
thinking in arithmetic, on the one hand, and mathematical structure, on the 
other, to learn more about shifts from particular to structural 
understandings. The importance of structural understanding in these 
contexts is that they offer students a source of control which allows them to 
move beyond the particular situation. It will be clear in what follows that the 
extent of this control is open to growth – that is, it is open to increasing 
levels of generality. Several authors, including Carpenter and Franke (2001) 
and Stephens (2006), refer to the thinking underpinning this kind of thinking 
as relational thinking, but from our standpoint it might just as easily be called 
structural thinking. Structural thinking is in this sense productive – a term 
we referred to earlier and to which we shall return to later. The products of 
structural thinking can extend from being able to give several other 
instances of the same property to giving fully developed generalisations.  

Number Sentences 
Carpenter and Franke (2001), Stephens (2006), Jacobs, Franke, Carpenter, 
Levi and Battey (2007), Molina (2007), and Fujii and Stephens (2001, 2008) 
have studied in detail ways in which children as young as 6-years-old 
respond when asked to justify their decision about the validity of statements 
such as 173 – 35 + 35 = 173. 

Some children calculate their way to the answer and then decide; some 
start to calculate and then notice the familiar number to be subtracted and 
declare their decision; others look at the expression and declare immediately 
without apparently doing any calculation at all. To decide without any 
calculation is a form of relational thinking, of appreciating arithmetic 
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structure concerning, if not zero, then the effect of first subtracting and then 
adding the same quantity. It could be the manifestation of a fundamental 
awareness that taking and then replacing makes no change (Lakoff & 
Nunez, 2000). As such it would be an example of a theorem-in-action 
(Vergnaud, 1983).  However students’ appreciation of this relation may go 
beyond its use in this context; they may be aware that they are using a 
generality – indeed, they may be able to state that they are using an abstract 
relation.  

When learners are justifying their decisions to each other, it is often very 
difficult to decide whether they are aware of a general property (the 173 and 
the 35 are instances of generality) or whether the 173 is mentally fixed but 
the 35 is an instantiation of taking and replacing, or an instantiation of  173 – 
a + a = 173, or even of b – a + a = b, that is, whether the 173 and the 35 are 
seen as mere place holders or as  quasi-variables (Fujii & Stephens, 2001; 
Lins & Kaput, 2004; Fujii & Stephens, 2008) or as mentally fixed pro tem.  
Some children can enact one or other of these relationships without being 
able to bring it to explicit articulation, and may not even use it robustly in all 
instances. Young children can sometimes articulate the general structural 
principles underlying the relationship, for example as “if you start with a 
number and you take away something and give it back you haven’t changed 
the starting number”. Children may be fuzzily aware that this relationship 
holds for all a and b with which they are familiar, or even able to express it 
as a generality, yet they may not have encountered or considered situations 
where a > b or where a and b are negative or rational. Thus general 
statements may adequately express limited structural understanding, based 
on restricted ranges of change.  

One way to think about the different possibilities, and even to seek 
evidence for different awarenesses, is through the focus and structure of 
their attention. The way they describe what they are doing sometimes 
suggests not only what they are attending to, but different ways in which 
they are attending, whether to the particular, or through the particular to the 
general, or at the particular though the general. Another way of expressing 
the complexity of learner awareness is that, without further probes, it is 
difficult to know the range-of-permissible-change of which the learner is 
aware, and even which dimensions-of-possible-variation the learner is 
contemplating. By asking learners to construct similar examples, some light 
is shed on at least some of the features they appreciate as changeable as well 
as the range over which the learner accepts that the change can be made 
(Watson & Mason, 2005). 

Sometimes too much concern is expressed about the abstruseness of 
letters used to denote as-yet-unspecified numbers. For example, Hewitt 
(1991) uses Greek letters to denote the constants in a complex calculation to 
the evident satisfaction and understanding of the whole of a class of 30 or so 
students in Year 7 (age 11-12). Having drawn their attention to the way they 
could find the number he was thinking of by undoing a sequence of 
calculations (“add 2 multiply by 3 divide by 5 … my answer is 6 so what did 
I start with?”), the single lesson ended with a complex example using Greek 
letters in place of numbers which they all happily solved. The important 
part of the lesson was the development of structural awareness, through 
repetition and emphasis, of how addition and subtraction undo each other, 
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as do multiplication and division (being careful about zero of course). The 
development occurred in the context of finding an as-yet-unknown number, 
and was generalised using Greek letters in the same rhythm so as to indicate 
that what matters was the structural relationship between the operations, 
not the specific numbers. Structural awareness, or relational thinking in this 
context, involves explicit awareness of some range-of-permissible-change of 
some dimensions-of-possible-variation. These ranges-of-permissible-change 
can be extended when other kinds of numbers and number-like objects are 
encountered. 

Missing Number Sentences 
Recent research carried out by Stephens (2008), Stephens and Wang (2008), 
and Stephens, Wang and Al-Murani (2008) used three types of mathematical 
sentences to explore students’ capacity to think about important aspects of 
mathematical structure. Type I number sentences used one missing number, 
Type II number sentences used two missing numbers and Type III sentences 
were modelled on Type II but used algebraic symbols. In the studies 
reported here, these three types of questions were used with 275 students in 
Australia, China and England ranging from Year 6 (10-11 years old) to Year 
9 (13-14 years old). 

Type I: one missing number. The first kind of number sentence (Type I) 
presents students with a number sentence with one number missing and 
asks them to find the value of the missing number and to explain briefly the 
reasoning they used to reach a solution. The authors used all four operations 
in Type I, and invited students to find the value of a missing number and to 
explain their thinking. For example: 

 
  +  17  = 15 + 24 
99 –     =  90 –  59 
48 × 2.5   =   × 10 
 3 ÷ 4       =  15 ÷  
For each operation, four different problems similar to those above were 

used but with the unknown number being set in a different place for each of 
the four problems. 

Some students relied on computation to solve these problems. In each 
case, they first computed the result of the operation involving the two 
known numbers, and then used this result to calculate the value of the 
missing number on the other side of the equal sign. Other students used 
compensation and equivalence. Irwin and Britt (2005) claim that the 
methods of compensating and equivalence that some students use in solving 
these number sentences may provide evidence of “what could usefully be 
described as structural thinking” (p. 169). They give, as an example, the 
expression 47 + 25 which can be transformed into an equivalent expression 
50 + 22 by adding 3 to 47 and subtracting 3 from 25, thus making calculation 
easier. They claim that “when students apply this strategy to sensibly solve 
different numerical problems they disclose an understanding of the 
relationships of the numbers involved. They show, without recourse to 
literal symbols, that the strategy is generalisable” (Irwin &Britt, 2005, p. 171). 
It is however not always so easy to deduce from observed behaviour 
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whether learners are aware of the 47 and 25 as dimensions-of-possible-
variation, of 3 as a dimension-of-possible-variation, or of the adding and 
subtracting as a special instance of more general compensation (another 
dimension-of-possible-variation). Structural thinking is much more than 
seeing a pattern, such as ‘when one number increases by three the other goes 
down by three’. Where this merely recounts the pattern used in this 
particular problem with no sense of generalisation to other instances, it 
indicates recognition of a relationship in particular but not perception of 
property in general. A capacity to generate other instances that illustrate the 
same property is a feature of structural thinking. Often it seems that 
students act as if they have some such awareness, but it may be neither 
robust nor universal. Furthermore, their perceived range-of-permissible-
change may be confined to positive whole numbers rather than to numbers 
more generally, whether involving negatives, rationals or decimals. A great 
deal depends on whether they are attending to and dwelling in the 
particular or in some sense aware of a property being instantiated, whether 
that in-dwelling comes from an awareness as a basis for their action in the 
form of a theorem-in-action, or from an emerging behavioural practice. 

Where learners respond to direct suggestions to ‘use compensation’ or 
to ‘add and subtract’, or to indirect prompts to use a strategy before trying to 
do it directly, they are on the way to being influenced by careful scaffolding 
and fading (Seeley Brown, Collins & Duguid, 1989; Love & Mason, 1992) so 
as to be able to initiate these actions for themselves (van der Veer & Valsiner, 
1991). Somewhere along the line, they display structural awareness. 

A deep understanding of equivalence and compensation is at the heart 
of structural thinking in arithmetic. Students need to know the direction in 
which compensation has to be carried out in order to maintain equivalence 
(Kieran, 1981; Irwin & Britt, 2005). Indeed, we suggest that structural 
thinking is present only when students’ explanations show that they 
understand the fundamental importance of the operations involved, make 
use of equivalence, the direction of compensation required to maintain 
equivalence, and how particular results are part of a more general pattern. 
According to Stephens (2008), students used a range of equally successful 
explanatory methods in their written responses to Type I sentences. Some 
students used arrows or brackets or other notation in ways which indicate a 
comprehensive understanding of equivalence and compensation. The use of 
arrows or directed lines to connecting related numbers, such as from 2.5 to 
10, showing ×4 above the line or arrow, and an arrow connecting 48 to the 
unknown number, with ÷4 joined to this line or arrow, was a simple and 
effective method of demonstrating the direction of compensation. Other 
students wrote their thinking in the form of mini-arguments (see Vergnaud, 
1983) using expressions such as “Since 17 is two more than 15, the missing 
number has to be two less than 24 in order to keep the balance”. Other 
students chose to make a similar argument starting with a relationship 
between 17 and 24. Relational thinking can be expressed using a wide range 
of methods and forms, but in all cases these forms and methods draw 
attention to the fundamental ideas of equivalence, and compensation as 
required by the particular operations. These features are equally important 
to elucidating the structures of the three types of mathematical sentences we 
refer to. 
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Type II: two missing numbers. One of the difficulties encountered in using 
Type I number sentences in a written questionnaire is that some students 
who may be quite capable of using structural thinking nevertheless choose 
to solve Type I sentences by computation. While they may find computation 
attractive and easy, these students are not to be confused with those who are 
restricted to solving such sentences computationally. This important 
distinction can, of course, be explored by means of an interview; by asking, 
for example, “Could you have solved this number sentence in another 
way?”. But there are other ways of pushing students beyond computation 
using written responses. In studies referred to above, this was achieved 
through the use of Type II number sentences using two unknowns, denoted 
by Box A and Box B, and employing one arithmetical operation at a time. 
Type II questions are exemplified in parts (a) to (d) in Figure 1 below. Using 
a similar template, other questions were devised involving subtraction, 
multiplication and division.  

 
Think about the following mathematical sentence: 
18 +   =   20 +  
Box A         Box B 

 
(a) Can you put numbers in Box A and Box B to make three correct 
sentences like the one above? 
(b) When you make a correct sentence, what is the relationship between the 
numbers in Box A and Box B? 
(c) If instead of 18 and 20, the first number was 226 and the second number 
was 231 what would be the relationship between the numbers in Box A and 
Box B? 
(d) If you put any number in Box A, can you still make a correct sentence? 
Please explain your thinking clearly. 

Figure 1. Type II number sentence involving addition. 
 

Almost all students were able to make up three replicas of each 
mathematical sentence using specific numbers. In dealing with addition, 
some students used large numbers such as 1,000,000 in Box A and 999,998 in 
Box B; and others used decimal numbers and fractions. There were students 
who chose quite simple numbers such as 3, 4, and 5 in Box A which they 
associated with 1, 2, and 3 respectively in Box B. Those who used more 
complex numbers in Box A and Box B usually had no difficulty in describing 
in part (b) the relationship between the numbers in Box A and Box B and in 
successfully answering the subsequent questions. But the same was true for 
many who had used relatively simple numbers in their exemplifications of 
the mathematical sentence in part (a). What actually discriminated between 
students’ accomplished and not-so-successful responses to parts (c) and (d) 
was how they answered part (b). Almost all students were able to identify 
some pattern between the numbers in Box A and the numbers they had used 
in Box B. But simply seeing a pattern may not be productive in perceiving 
structure as a property to be instantiated elsewhere.   

Some students identified what might be called a non-directed relation 
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between the numbers used in Box A and Box B, saying, for example, “There 
is 2 difference”, or “They are 2 apart”, or “There is a distance of 2”. Some 
qualified this non-directed relation by saying, “There is always 2 difference”. 
Others noticed a directed relation between the numbers used but attached 
no magnitude to the relation, saying, for example, “Box A is bigger than Box 
B”. Others expressed a direction but without referring to Box A or Box B, 
saying, for example, “One number is always higher than the other number 
by 2”, or “One is two more than the other”. These responses illustrate clearly 
the difference between seeing only particular features of a relationship and 
what we would call structural or fully referenced relational thinking.  

In each of these cases, students had noticed some relationship between 
the numbers in Box A and Box B, but their descriptions suggest that they 
were attending to a specific feature of the relationship that could be 
expressed comprehensively as “The number in Box A is two more than the 
number in Box B”. On the other hand, it may be that when they came to 
articulate what they were aware of, their attention was diverted to a part 
rather than some more comprehensive whole. Many might not have been 
familiar with the kind of relationships which prove to be productive in 
mathematics. To be productive, relationships have to be fully referenced − in 
this instance, there has to be unambiguous reference to the numbers 
represented by Box A and Box B; and the magnitude and direction of the 
relationship has to be specified − just saying that one is bigger than the 
other, or that there is a difference of two is not enough. Students had their 
own ways of elaborating comprehensive descriptions; with some using 
logical qualifiers such as “must be” or “has to be” instead of “is”, whereas 
others added a phrase like “in order for the sentence to be correct” or “for 
both sides to be equivalent”. There were others who chose to write the 
relationship in symbolic form, writing an equation involving Box A and Box 
B, or in some cases just A and B. The presence of logical qualifiers and the 
use of symbolic forms is evidence that students had grasped a source of 
control that comes from fully referenced relational thinking. These students 
appeared to be attending more carefully to what we recognised as the 
structure of the mathematical sentence than those above whose statements 
pointed to some but not all of the features essential for equivalence.  

What we find very illuminating in all the questionnaire responses in the 
studies reported above is that no student who referred to only partial 
features of the relationship between the numbers in Box A and the numbers 
in Box B answered part (d) successfully. Of course, many attempted to 
answer this question but their answers were always incomplete. Some 
students answered “No”, but then added that it would be necessary to have 
numbers in Box B that “will allow both sides to balance”. Others thought 
that it would be impossible without using negative numbers. Still others 
continued to rely on the partial features that they had used in answering 
part (b) in order to answer part (d). 

In summary, these kinds of responses may not be so much incorrect and 
erroneous as incomplete. They fall short in various ways of being 
productive. They add weight to the distinction we want to underline that 
seeing some relationship or pattern is not the same as recognising a 
mathematical structure. We do need to point out that a mathematically 
complete description of the relationship between the numbers in Box A and 
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the numbers in Box B, as required for part (b), did not guarantee a successful 
answer to part (d). Some who had correctly answered part (b) appeared to 
be worried about the range of variation that might be required for part (d) to 
be correct. Nevertheless, there was a strong association between a correct 
response to part (b) and part (d). Furthermore, when students used similar 
partial or incomplete descriptions to describe the relationship between the 
numbers in Box A and the numbers in Box B in related questions involving 
subtraction, multiplication and division, they were also unable to 
successfully answer the corresponding part (d) question, “If you put any 
number in Box A, can you still make a correct sentence?” 

Type III: symbolic sentences. Following part (d) students were given a 
sentence involving literal symbols c and d in place of the boxes and where 
the numbers were slightly different. In the case of addition (Figure 1) a 
symbolic relationship of the form c + 2 = d + 10 was used in a part (e). 
Students were asked, “What can you say about c and d in this mathematical 
sentence?” Once again, none of the students who had given one of the 
‘partial descriptions’ of the full relationship between the numbers in Box A 
and the numbers in Box B successfully answered this question. Many chose 
to give a particular set of values, such as c = 10 and d = 2 in the case of 
addition. Those who were able to answer part (e) successfully had all given 
a complete and correct response to part (b) and part (c), and most had given 
a correct and complete response to part (d). Among successful responses, 
there was, moreover, a high level of consistency between the language and 
terminology used to explain students’ answers to part, (d) and (e). For 
example, where students had answered (d) using a symbolic relationship 
they almost always used a symbolic expression to describe the relationship 
between c and d; and where they had used written descriptions in answering 
part (d) and part (e) they used similar words and phrases in both 
expressions. One student commented that the c and d were “just like Box A 
and Box B”. This suggests an aspect of structural understanding that could 
be explored more deeply in interviewing students who gave correct answers 
to parts (d) and (e). Referring to the Type II number sentence and its 
corresponding Type III symbolic expression involving c and d, students 
could be invited to comment on the statement: “These two sentences look 
different. Are they so different? Can you comment from a mathematical 
point of view on any similarities you notice about them?” 

Pedagogic Consequences: Bridging the Mythical Chasm 
Distinctions between procedural and conceptual thinking (Hiebert, 1986) are 
so numerous in the literature that they have become an accepted, if mythical, 
commonplace in mathematics education. We suggest that any sensible 
approach to teaching combines work on understanding concepts with work 
on mastering procedures, and combines tasks designed to stimulate learners 
to express their own thinking using technical terms with tasks designed to 
highlight the use of important routines. Keeping the notion of mathematical 
structure in mind, together with seeking the structural underpinnings of any 
proposed tasks, provides ways for students to experience these important 
elements. It is important to realize that structural thinking cannot be 
described as either being present or absent. Rather it develops over time 
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with different levels of complexity in different mathematical contexts. In this 
next section we show how some well known descriptions of learning 
support the detail we have presented so far in this paper. 

Biggs and Collis (1982; see also Biggs, 1999) distinguished five levels of 
student responses to probes based around the idea of relationships:  

• Pre-structural: students accumulate isolated facts and elemental 
procedures 

• Uni-structural: they make associations but without significance or 
meaning 

• Multi-structural: multiple links are found but without overall 
meaning or significance 

• Relational: students appreciate relations between parts and an 
overall narrative 

• Extended abstract: connections are made within a topic and beyond. 
Their taxonomy enabled them to distinguish students’ depth of 
understanding of different topics by classifying the nature of responses to 
probes.  There are close similarities with the different structures of attention 
described earlier. One significant difference is that these levels are seen as 
progressive, whereas the attention states we have described are non-
sequential: sometimes attention shifts rapidly between states, though at 
other times its structure remains relatively constant for a few minutes.  

Halford (1999) has similarly tackled the issue of progressive structural 
complexity from a developmental point of view. He proposes that the 
development of intelligence is characterised by dealing with relations not 
just between two things but several, and eventually relations between 
simpler relations. For teaching purposes, an arithmetic of structural 
complexity such as is proposed by Biggs, Collis and Halford serves as a 
reminder that as students encompass more concepts, and develop a maturity 
in the use of concepts, their attention expands to encompass more than 
simple associative links and connections. They become more what we are 
calling structurally aware and hence, with experience, more likely to 
respond structurally in the future. What is of interest here is that these 
approaches do not distinguish between procedures and concepts. They 
focus on complexity of structure from which, we argue, both conceptual 
understanding and procedural competence can emerge. 

In a recent fresh attempt to delineate key components of mathematical 
proficiency, Kilpatrick and colleagues (Kilpatrick et al., 2001, p. 117) 
proposed five intertwined strands: adaptive reasoning, strategic 
competence, conceptual understanding, productive disposition and 
procedural fluency. They include comprehension of mathematical concepts, 
operations and relations under the heading of conceptual understanding, 
which can be interpreted to include both relationships between 
mathematical concepts, relationships among concepts, theorems and 
procedures, and structural awareness. Procedural fluency includes both 
facility in using procedures and a repertoire of procedures to use, or in the 
terms used here, of actions to be initiated based on core awarenesses. A 
productive disposition is encouraged where students are stimulated to use 
their own powers, including using structural awareness and memory to re-
construct (and re-member) rather than relying solely on rote memory for 
formulae and procedures.  Furthermore, their reasoning is more likely to be 
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adaptive where there is greater flexibility, in contrast to the limitations of 
training in specific behaviour following taught procedures on ritualized 
exercises. Again, procedural fluency is more likely where the guidance as to 
what procedures to invoke is informed by structural awareness rather than 
simply by surface features of tasks. 

Productive Thinking 
A case for mathematics education based on structural or, as he called it, 
productive thinking was made more than sixty years ago by Wertheimer 
(1945/1961), one of the instigators of Gestalt psychology. For example, in 
justifying a formula for the area of a rectangle, Wertheimer contrasts several: 
the first is a × b; another is the expression 

1 1

a b

b a

!

!

 where a and b denote the 

length and width (1961, p. 29). In every case the formula gives the same 
result as a × b, but whereas it has no apparent connection with area, the 
familiar formula can be shown to be related to the process of dividing a 
rectangle into constituent units of area, and aggregating a total number of 
rectangles, each of unit area, which comprise the larger shape. Of course, a 
person who simply says that a × b gives the area of a rectangle without being 
able to explain why, may well be engaging in purely instrumental or 
procedural thinking. However, Wertheimer’s point is that the second 
formula and its variations (replacing the subtractions by additions, or 
becoming even more convoluted), while always giving a correct value of the 
area of any rectangle, cannot, as presented, be related to any pertinent 
feature of the shape under consideration3. In other words, they have no 
structural relationship to the area of a rectangle. They are not expressions of 
the area, though they may be correct expressions for the area. To paraphrase 
Wertheimer, structural explanations must have the potential of referring to 
perceptual-structural features of what is being explained. 

We take Wertheimer as supporting the view that to develop a 
productive disposition almost certainly requires more than success at the 
application of memorized methods to routine tasks.  It depends on a 
developing identity as someone who engages with mathematical problems 
not simply as relaxing pastimes like crossword puzzles, but through 
appreciation of mathematical structures and relations between structures. 

Instrumental and Relational Thinking 
Using Skemp’s (1976) distinction between relational and instrumental 
thinking, it is easy to point to instances where a student says, “This is how 
you do it, but don’t ask me to explain why”. For example, Fischbein and 
Muzicant (2002) in their study of equivalent algebraic expressions provide 
several very clear examples where students used procedural or instrumental 
thinking when asked to decide whether successive steps carried out on 

                                                
3  Jo Tomalin and Sue Elliott (private communication) have recently found a 
geometrical justification of the formula as given. 
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simple algebraic expressions were correct and led to equivalent expressions. 
They reported on some Year 9 and 10 students, who, having completed 
several years of standard secondary school algebra, were given a statement  

 
 
 

and presented with a simplification carried out by a hypothetical student 
Dan who had transformed this expression to become p(x) = 2(2 – x) + 3(2 + 
x) + 24. Students were then asked, “Was Dan correct? Yes/No.” In 
subsequent interviews with students, the authors noted that many students 
agreed unhesitatingly with what Dan had done, accepting the elimination of 
the common denominator. Common responses to this and related questions 
were, “I eliminated the denominator. That is what we do in class”. 

Fischbein and Muzicant align their use of “structural” with Skemp’s 
“relational” and their “procedural” with his “instrumental”. Structural 
thinking, they suggest, needs to be defined with respect to “axioms, 
theorems, definitions, general concepts and properties (which) control the 
interpretation and use of more specific concepts and problem solving 
procedures” (p. 51). Structural thinking is the disposition to use, explicate 
and connect these properties in one’s mathematical thinking. 

Conclusions 
Many authors in the past have drawn attention to learners’ capacities to 

think relationally or structurally.  However, it is not enough for a teacher to 
be aware of structure, whether arithmetic, geometric or some combination. It 
is certainly not wise to perform a didactic transposition on structural 
relations in order to try to convert them into instructions to learners in how 
to behave, that is, how to answer assessment questions on structure. 
Appreciating mathematical structure, and making use of it, is not a 
technique or a procedure to be taught alongside addition and subtraction.  
Rather, mathematical structure is an awareness which, if it develops in and 
for students, will transform their mathematical thinking and their 
disposition to engage. This can only happen if teachers are themselves not 
only aware of structural relationships, but have at hand strategies and tactics 
(such as those described in this paper) for bringing structural relationships 
to the fore. We maintain that this applies at every age. 

Teachers who are themselves explicitly aware of structural 
relationships, who are aware of perceiving situations as instances of 
properties (rather than as surprising and unique events), are in a position to 
promote similar awareness in their learners. They can urge their learners to 
justify their anticipations and actions on the basis of properties which have 
been discussed and articulated, rather than on the basis of inductive-
empirical experience. Working in this way could promote and foster the 
development of a structural or mathematically sound epistemological stance 
in preference to empiricist (it always seems to work), socio-cultural (adults 
act as if it works), or agnostic (it just is) stances. 

While over-concentration on procedures usually diverts attention away 
from underlying structure, we have argued that the so called procedural-
conceptual divide is a consequence of pedagogical decisions rather than a 
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necessary psychological experience, and that making pedagogical decisions 
from a structural point of view can overcome many of the difficulties arising 
from over-reliance on procedures or conceptual thinking exclusively. 
Furthermore, treating some learners as incapable of understanding structure 
simply reinforces their natural focus on procedures rather than directing 
their attention to conceptual structure. 
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